In differential geometry, an equiareal map is a smooth map from one surface to another that preserves the area of figures. If M and N are two surfaces in the Euclidean space R3, then an equi-areal map ƒ can be characterized by any of the following equivalent conditions:
An example of an equiareal map, due to Archimedes of Syracuse, is the projection from the unit sphere x2 + y2 + z2 = 1 to the unit cylinder x2 + y2 = 1 outward from their common axis. An explicit formula is
for (x,y,z) a point on the unit sphere.
In the context of geographic maps, a map projection is called equiareal, or more commonly equi-area, if areas are preserved up to a constant factor; embedding the target map, usually considered a subset of R2, in the obvious way in R3, the requirement above then is weakened to:
for some κ > 0 not depending on and . For examples of such projections, see Equal-area map projections. Linear equi-areal maps are 2 × 2 real matrices making up the group SL(2,R) of special linear transformations.